Nonparametric Maximum Likelihood Estimation by the Method of Sieves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Maximum Likelihood Estimation by the Method of Sieves

Maximum likelihood estimation often fails when the parameter takes values in an infinite dimensional space. For example, the maximum likelihood method cannot be applied to the completely nonparametric estimation of a density function from an iid sample; the maximum of the likelihood is not attained by any density. In this example, as in many other examples, the parameter space (positive functio...

متن کامل

Independent Component Analysis via Nonparametric Maximum Likelihood Estimation By

Independent Component Analysis (ICA) models are very popular semiparametric models in which we observe independent copies of a random vector X =AS, where A is a non-singular matrix and S has independent components. We propose a new way of estimating the unmixing matrix W = A−1 and the marginal distributions of the components of S using nonparametric maximum likelihood. Specifically, we study th...

متن کامل

Nonparametric maximum likelihood estimation for the multisample Wicksell corpuscle problem

We study nonparametric maximum likelihood estimation for the distribution of spherical radii using samples containing a mixture of one-dimensional, two-dimensional biased and three-dimensional unbiased observations. Since direct maximization of the likelihood function is intractable, we propose an expectation-maximization algorithm for implementing the estimator, which handles an indirect measu...

متن کامل

Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood

We propose a simulated maximum likelihood estimator (SMLE) for general stochastic dynamic models based on nonparametric kernel methods. The method requires that, while the actual likelihood function cannot be written down, we can still simulate observations from the model. From the simulated observations, we estimate the unknown density of the model nonparametrically by kernel methods, and then...

متن کامل

A Nonparametric Maximum Likelihood Estimation of Conditional Moment Restriction Models

This paper studies estimation of a conditional moment restriction model using the nonparametric maximum likelihood approach proposed by Gallant and Nychka (1987). Under some sufficient conditions, we show that the estimator of some finite dimensional parameters is asymptotically normally distributed and attains the semiparametric efficiency bound and that the estimator of the density function i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1982

ISSN: 0090-5364

DOI: 10.1214/aos/1176345782